Refine your search:     
Report No.
 - 
Search Results: Records 1-14 displayed on this page of 14
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of mock-up test loop (IMMORTAL) for LBE spallation target

Obayashi, Hironari; Yamaki, Kenichi*; Yoshimoto, Hidemitsu*; Kita, Satoshi*; Wan, T.*; Sasa, Toshinobu

JAEA-Technology 2021-035, 66 Pages, 2022/03

JAEA-Technology-2021-035.pdf:4.26MB

Construction of Transmutation Experimental Facility (TEF) is under planning in Japan Proton Accelerator Research Complex (J-PARC) program to promote R&Ds on realization of transmutation technology by an accelerator driven system (ADS). As a facility of TEF, ADS Target Test Facility (TEF-T) will provide a spallation target to study target technology and perform post irradiation examination (PIE) of candidate materials of ADS. In ADS, lead-bismuth eutectic (LBE) alloy is used as a spallation target material and a core coolant. As is well known, LBE has corrosive to structural materials hence each component of the target system should provide compatibility with LBE. In addition, instrumentations for LBE are restricted by the target operation condition such as high temperature and irradiation environment. The devices for LBE have been developed individually to achieve the LBE target system. "Integrated Multi-functional MOckup for TEF-T Real-scale TArget Loop, IMMORTAL" was fabricated as a mock-up test loop of the target for the purpose of the integration testing of individually developed devices. This report describes an overview of IMMORTAL and the design of the installed devices.

Journal Articles

The Analytical study of inventories and physicochemical configuration of spallation products produced in Lead-Bismuth Eutectic of Accelerator Driven System

Miyahara, Shinya*; Ohdaira, Naoya*; Arita, Yuji*; Maekawa, Fujio; Matsuda, Hiroki; Sasa, Toshinobu; Meigo, Shinichiro

Nuclear Engineering and Design, 352, p.110192_1 - 110192_8, 2019/10

 Times Cited Count:5 Percentile:48.18(Nuclear Science & Technology)

Lead-Bismuth Eutectic (LBE) is used as a spallation neutron target and coolant materials of Accelerator Driven System (ADS), and many kinds of elements are produced as spallation products. It is important to evaluate the release and transport behavior of the spallation products in the LBE. The inventories and the physicochemical composition of the spallation products produced in LBE have been investigated for an LBE loop in the ADS Target Test Facility (TEF-T) in J-PARC. The inventories of the spallation products in the LBE were estimated using the PHITS code. The physicochemical composition of the spallation products in the LBE was calculated using the Thermo-Calc code under the conditions of the operation temperatures of LBE from 350$$^{circ}$$C to 500$$^{circ}$$C and the oxygen concentrations in LBE from 10 ppb to 1 ppm. The calculation showed that the 5 elements of Rb, Tl, Tc, Os, Ir, Pt, Au and Hg were soluble in LBE under the all given conditions and any kinds of compound were not formed in LBE. It was suggested that the oxides of Ce, Sr, Zr and Y were stable as CeO$$_{2}$$, SrO, ZrO$$_{2}$$ and Y$$_{2}$$O$$_{3}$$ in the LBE.

Journal Articles

Thermal-hydraulic analysis of the LBE spallation target head in JAEA

Wan, T.; Obayashi, Hironari; Sasa, Toshinobu

Nuclear Technology, 205(1-2), p.188 - 199, 2019/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Design of 250kW LBE spallation target for the Japan Proton Accelerator Research Complex (J-PARC)

Sasa, Toshinobu; Saito, Shigeru; Obayashi, Hironari; Sugawara, Takanori; Wan, T.; Yamaguchi, Kazushi*; Yoshimoto, Hidemitsu

NEA/CSNI/R(2017)2 (Internet), p.111 - 116, 2017/06

Japan Atomic Energy Agency (JAEA) proposes to reduce the environmental impact caused from high-level radioactive waste by using Accelerator-driven system (ADS). To realize ADS, JAEA plans to build the Transmutation Experimental Facility (TEF) within the framework of J-PARC project. For the JAEA-proposed ADS, lead-bismuth eutectic alloy (LBE) is adopted as a coolant for subcritical core and spallation target. By using TEF in J-PARC, we are planning to solve technical difficulties for LBE utilization by completion of the data for the design of ADS. The 250kW LBE spallation target will be located in TEF facility to prepare material irradiation database. Various R&Ds for important technologies required to build the facilities are investigated such as oxygen content control, instruments development, remote handling techniques for target maintenance, and spallation target design. The large scale LBE loops for 250kW target mock up and material corrosion studies are also manufactured and ready for various experiments. The latest status of 250kW LBE spallation target optimization will be described in the presentation.

JAEA Reports

Technical design report on J-PARC Transmutation Experimental Facility; ADS Target Test Facility (TEF-T)

Nuclear Transmutation Division, J-PARC Center

JAEA-Technology 2017-003, 539 Pages, 2017/03

JAEA-Technology-2017-003.pdf:59.1MB

JAEA is pursuing R&D on volume reduction and mitigation of degree of harmfulness of high-level radioactive waste based on the "Strategic Energy Plan" issued in April 2014. Construction of Transmutation Experimental Facility is under planning as one of the second phase facilities in the J-PARC program to promote R&D on the transmutation technology with using accelerator driven systems (ADS). The TEF consists of two facilities: ADS Target Test Facility (TEF-T) and Transmutation Physics Experimental Facility (TEF-P). Development of spallation target technology and study on target materials are to be conducted in TEF-T with impinging a high intensity proton beam on a lead-bismuth eutectic target. Whereas in TEF-P, by introducing a proton beam to minor actinide loaded subcritical cores, physical properties of the cores are to be studied, and operation experiences are to be acquired. This report summarizes results of technical design for construction of one of two TEF facilities, TEF-T.

Journal Articles

Design study around beam window of ADS

Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Kikuchi, Kenji; Kurata, Yuji; Sasa, Toshinobu; Umeno, Makoto*; Nishihara, Kenji; Saito, Shigeru; Mizumoto, Motoharu; Takano, Hideki*; et al.

Proceedings of 4th International Workshop on the Utilisation and Reliability of High Power Proton Accelerators, p.325 - 334, 2005/11

The Japan Atomic Energy Research Institute (JAERI) is conducting the research and development (R&D) on the Accelerator-Driven Subcritical System (ADS) for the effective transmutation of minor actinides (MAs). The ADS proposed by JAERI is the 800 MWth, Pb-Bi cooled, tank-type subcritical reactor loaded with (MA+Pu) nitride fuel. The Pb-Bi is also used as the spallation target. In this study, the feasibility of the ADS was discussed with putting the focus on the design around the beam window. The partition wall was placed between the target region and the ductless-type fuel assemblies to keep the good cooling performance for the hot-spot fuel pin. The flow control nozzle was installed to cool the beam window effectively. The thermal-hydraulic analysis showed that the maximum temperature at the outer surface of the beam window could be repressed below 500 $$^{circ}$$C even in the case of the maximum beam power of 30 MW. The stress caused by the external pressure and the temperature distribution of the beam window was also below the allowable limit.

Journal Articles

R&D activities on accelerator-driven transmutation system in JAERI

Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Kikuchi, Kenji; Kurata, Yuji; Sasa, Toshinobu; Umeno, Makoto*; Saito, Shigeru; Nishihara, Kenji; Mizumoto, Motoharu; Takano, Hideki*; et al.

EUR-21227 (CD-ROM), p.483 - 493, 2005/00

JAERI is conducting the study on the dedicated transmutation system using the accelerator driven subcritical system (ADS). A subcritical reactor with the thermal power of 800 MW has been proposed. Many research and development activities including the conceptual design study are under way and planned at JAERI to examine the feasibility of the ADS. In the field of the proton accelerator, a superconducting LINAC is being developed. In the field of the spallation target using lead-bismuth eutectic (LBE), material corrosion, thermal-hydraulics, polonium behavior, and irradiation effect on materials are being studied. Moreover, in the framework of the J-PARC project, JAERI plans to construct the Transmutation Experimental Facility (TEF) to study the feasibility of the ADS using a high-energy proton beam and nuclear fuel and to establish the technology for the LBE spallation target and relevant materials.

Journal Articles

Present status and perspective on nuclear transmutation, C; Accelerator driven transmutation system

Oigawa, Hiroyuki

Genshikaku Kenkyu, 47(6), p.39 - 52, 2003/03

Minor actinide (MA) and long-lived fission product (LLFP) keep their radiological toxicity in high level waste of nuclear fuel cycle for long period. In order to transmute such nuclides to short-lived or stable ones, the Accelerator-Driven Transmutation System (ADS) is proposed and developed. This article presents the current status of the research and development on ADS, technical issues to be solved, the experimental program under the framework of the High-Intensity Proton Accelerator Project (J-PARC), and worldwide activities.

Journal Articles

The Current status of R&D for accelerator-driven system at JAERI

Sasa, Toshinobu; Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Nishihara, Kenji; Umeno, Makoto*; Takano, Hideki*

Proceedings of International Conference on Global Environment and Advanced Nuclear Power Plants (GENES4/ANP 2003) (CD-ROM), 8 Pages, 2000/09

Japan Atomic Energy Research Institute (JAERI) performs research and development for accelerator-driven transmutation systems to improve the environmental impact and increase a capacity of waste disposal plant. The system consists of a superconducting proton LINAC, Pb-Bi eutectic spallation target and Pb-Bi cooled subcritical core. Thermal output of the system is 800MW by injection of the proton beam with the power of 20 to 30MW and then, about 250kg of minor actinides can be transmuted annually. To study and evaluate the feasibility of ADS by a physical and an engineering viewpoint, the Transmutation Experimental Facility is proposed under a framework of J-PARC project. In the presentation, the R&D activities by the contract between the Ministry of Education, Culture, Sports, Science and Technology will be presented.

Oral presentation

Activities in JAEA including 1st Technical Meeting for ADS-NTT 2015

Sasa, Toshinobu

no journal, , 

The status of research and development activities for accelerator-driven system (ADS) as well as the transmutation technologies using ADS, will be summarized comprehensively. The Topical Meeting on lead-bismuth handling technology, that was held at the J-PARC Center in 2015, will also be introduced.

Oral presentation

Studies for accelerator-driven system in J-PARC/JAEA

Sasa, Toshinobu

no journal, , 

Japan Atomic Energy Agency (JAEA) proposes a transmutation of minor actinides (MA) by Accelerator-driven System (ADS). A lead-bismuth eutectic alloy (LBE) is used as a spallation target and a coolant of subcritical core because LBE has a good spallation neutron production performance and a chemically inert characteristic. However, the compatibility with steels is unfavourable for the typical structural materials such as a 316 stainless steel. To obtain the data for ADS design, JAEA plans to construct the Transmutation Experimental Facility (TEF) within the framework of the J-PARC project, which consists of two buildings, an ADS Target Test Facility (TEF-T) and a Transmutation Physics Experimental Facility (TEF-P). The activities to realize the TEF, a roadmap to establish the ADS transmutor and latest elemental test results for TEF construction will be introduced.

Oral presentation

The Analytical prediction of inventories and physicochemical composition of spallation products produced in Lead-Bismuth Eutectic of Accelerator Driven System

Miyahara, Shinya*; Arita, Yuji*; Ohdaira, Naoya*; Sasa, Toshinobu; Maekawa, Fujio; Matsuda, Hiroki

no journal, , 

Lead-Bismuth Eutectic (LBE) is used as a spallation neutron target and coolant materials of Accelerator Driven System (ADS), and many kinds of elements are produced as spallation products. It is important to evaluate the release and transport behavior of the spallation products in the LBE. The inventories and the physicochemical composition of the spallation products produced in LBE have been investigated for an LBE loop in the ADS Target Test Facility (TEF-T) in J-PARC. The inventories of the spallation products in the LBE were estimated using the PHITS code. The physicochemical composition of the spallation products in the LBE was calculated using the Thermo-Calc code under the conditions of the operation temperatures of LBE from 350$$^{circ}$$C to 500$$^{circ}$$C and the oxygen concentrations in LBE from 10 ppb to 1 ppm. The calculation showed that the 5 elements of Hg, Tl, Au, Os, Tc were soluble in LBE under the all given conditions and any kinds of compound were not formed in LBE. It was suggested that the oxides of Ce, Zr and Y were stable as CeO$$_{2}$$, ZrO$$_{2}$$ and Y$$_{2}$$O$$_{3}$$ in the LBE.

Oral presentation

Oral presentation

14 (Records 1-14 displayed on this page)
  • 1